Jetstream Overview:
A national research and education cloud

CCSCNW – October 12-13, 2018 – Bothell, WA
Jeremy Fischer – jeremy@iu.edu

Senior Technical Advisor,
UIT Research Technologies

NSF Funding Areas in HPC

Traditionally concentrated on enabling petascale capability
- Blue Waters – 13.3 petaflops, 2012 (under re-compete)
- Stampede – 9.6 petaflops, 2013 (extended to Stampede2 in 2017 – 18 petaflops)
- Comet – ~2.0 petaflops, 2014

Has funded research into building clouds and computer science
- CloudLab (renewed for 2nd phase)
- Chameleon (renewed for 2nd phase)

Now funding clouds to do research
- Bridges (Hybrid system)
- Jetstream
Lots of stats below –

tl;dr summary: no one has enough computing resources…but most aren’t using XSEDE in any capacity at all.

Around 350,000 researchers, educators, & learners received NSF support in 2015

- Less than 2% completed a computation, data analysis, or visualization task on XD/XSEDE program resources
- Less than 4% had an XSEDE Portal account
- 70% of researchers surveyed* claimed to be resource constrained

Why are the people not using XD/XSEDE systems not using them?

- Perceived ease of access and use
- HPC resources – the traditional view of what XSEDE offers - are often not well-matched to their needs
- They just don’t need that much capability

* XSEDE Cloud Survey Report - http://hdl.handle.net/2142/45766

http://jetstream-cloud.org/
Identifying the potential users

“But I really don’t have research needs… I don’t need the national research cyberinfrastructure.”

--- multiple researchers at a number of small colleges and universities
What is Jetstream and why does it exist?

- NSF’s first production cloud facility
- Part of the NSF eXtreme Digital (XD) program
- Focus on ease-of-use, broad accessibility
- Provides on-demand *interactive* computing and analysis or persistent gateways
- Enables *configurable* environments and *programmable* cyberinfrastructure
Who uses Jetstream?

- The researcher needing a handful of cores (1 to 44/vCPU)
- Software creators and researchers needing to create their own customized virtual machines and workflows
- Science gateway creators using Jetstream as either the frontend or processor for scientific jobs
- STEM Educators teaching on a variety of subjects
What Jetstream isn’t…

• It’s not traditional HPC
• There’s no shared filesystem (think cloudy!)
• There’s no high-end interconnect fabric (keep thinking cloudy!)
• There aren’t GPUs (yet…stay tuned)
• It isn’t Amazon, Azure, or GCE (similar, but…)

http://jetstream-cloud.org/
funded by the National Science Foundation
Award #ACI-1445604
HPC vs Cloud

Adapting to a different environment:

• No reservations, no queueing – more interactive usage
• Being your own admin – hey, we have root!**
• You really can have almost any (linux) software you want**
• Constantly getting new features (https://www.openstack.org/software/project-navigator/)

** Here there be dragons…
Jetstream and way of the cloud…

• **Cloudy Technologies**: clouds are more than just virtual machines (VM)
 • **Old way**: robust (expensive) infrastructure, weak (cheap) software
 • You expect the hardware to not fail
 • State in maintained in volatile data structures
 • **Cloudy way**: commodity infrastructure, robust software
 • Expect & plan for infrastructure to fail
 • Put intelligence into the software to handle infrastructure failure
• And my favorite…
Thinking about VMs…

Cows, not pets: pets take great amount of care, feeding, and you name them; cows you intend to have high turnover and you give them numbers.

-- Mike Lowe (Jetstream architect)

**some caveats for gateways…
Jetstream System Overview

Jetstream (production)
- IU Cyberinfrastructure
 - Compute: 320 Nodes, 7,680 Cores, 40 TB RAM, 640 TB local disk
 - Storage: 960 TB

Jetstream (production)
- TACC Cyberinfrastructure
 - Compute: 320 Nodes, 7,680 Cores, 40 TB RAM, 640 TB local disk
 - Storage: 960 TB

Jetstream (development)
- U of Arizona Cyberinfrastructure
 - Compute: 16 Nodes, 2 TB RAM, 384 Cores, 32 TB local disk

Internet2

funded by the National Science Foundation
Award #ACI-1445604

http://jetstream-cloud.org/
Production cloud hardware (per site)

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Number</th>
<th>Specifications</th>
<th>Function (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell PowerEdge M630 blades</td>
<td>320</td>
<td>2x Intel E5-2680v3 “Haswell” 24 cores @ 2.5 GHz</td>
<td>Compute hosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128 GB RAM</td>
<td>OpenStack services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 TB local disk</td>
<td></td>
</tr>
<tr>
<td>Dell PowerEdge R630 1U server</td>
<td>7</td>
<td>2x Intel E5-2680v3 “Haswell” 24 cores @ 2.5 GHz</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>128 GB RAM</td>
<td>High Availability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 TB local disk</td>
<td>Databases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RabbitMQ</td>
</tr>
<tr>
<td>Dell PowerEdge R730xd 2U servers</td>
<td>20</td>
<td>2x Intel E5-2680v3 “Haswell” 24 cores @ 2.5 GHz</td>
<td>~1 PB Ceph storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 TB storage for Ceph pool</td>
<td></td>
</tr>
<tr>
<td>Dell S6000-ON network switches</td>
<td>9</td>
<td>32+2 40 Gb/s ports</td>
<td>Top of Rack</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spine</td>
</tr>
</tbody>
</table>
Platform Overview

- Web App
- Globus Auth
- Atmosphere API
- Atmo Services
- XSEDE Accounting
- OpenStack
- Ceph

Indiana University

TACC
The Jetstream Atmosphere web interface
Hardware and Instance "Flavors"

<table>
<thead>
<tr>
<th>Flavor</th>
<th>vCPUs</th>
<th>RAM</th>
<th>Storage</th>
<th>Per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiny</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>small</td>
<td>2</td>
<td>4</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>medium</td>
<td>6</td>
<td>16</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>large</td>
<td>10</td>
<td>30</td>
<td>120/60*</td>
<td>4</td>
</tr>
<tr>
<td>xlarge</td>
<td>24</td>
<td>60</td>
<td>240/60*</td>
<td>2</td>
</tr>
<tr>
<td>xxlarge</td>
<td>44</td>
<td>120</td>
<td>480/60*</td>
<td>1</td>
</tr>
</tbody>
</table>

** s1.* storage-rich instances are not eligible to be saved into a customized image

- Short-term *ephemeral* storage comes as part of launched instance
- Long-term storage is XSEDE-allocated
- Implemented as OpenStack Volumes and object storage
- Default storage is modest, but more is available via allocation
Using Jetstream VMs

Manipulating Jetstream VMs:
- Jetstream Atmosphere web interface
- Direct API access via OpenStack command line or Horizon access
 - API access enables Science Gateways and other always on services or on demand use cases; e.g. elastic compute techniques

Primary methods of logging into Jetstream VMs to work:
- Interactive user access via web interface with VNC/SSH
- Direct VNC/SSH to individual instances
<table>
<thead>
<tr>
<th>Discipline or area of interest</th>
<th># of Jetstream allocations</th>
<th>SU's allocated on Jetstream</th>
<th>% of SU's allocated on Jetstream</th>
<th>% of all SU's allocated on other XSEDE-supported systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomy</td>
<td>2</td>
<td>1,108,096</td>
<td>3.04%</td>
<td>8.61%</td>
</tr>
<tr>
<td>Atmospheric Sciences</td>
<td>4</td>
<td>2,752,400</td>
<td>7.55%</td>
<td>3.73%</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>57</td>
<td>5,199,000</td>
<td>14.27%</td>
<td>4.95%</td>
</tr>
<tr>
<td>Campus/Domain Champions</td>
<td>123</td>
<td>6,105,500</td>
<td>16.76%</td>
<td>0.09%</td>
</tr>
<tr>
<td>Computational Science</td>
<td>11</td>
<td>1,150,000</td>
<td>3.16%</td>
<td>0.92%</td>
</tr>
<tr>
<td>Computer Science</td>
<td>15</td>
<td>4,944,302</td>
<td>13.57%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Education Allocations</td>
<td>24</td>
<td>2,847,600</td>
<td>7.82%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Engineering</td>
<td>1</td>
<td>100,000</td>
<td>0.27%</td>
<td>3.81%</td>
</tr>
<tr>
<td>Geosciences</td>
<td>10</td>
<td>1,978,400</td>
<td>5.43%</td>
<td>2.87%</td>
</tr>
<tr>
<td>Humanities/Social Sciences</td>
<td>10</td>
<td>560,000</td>
<td>1.54%</td>
<td>0.45%</td>
</tr>
<tr>
<td>Molecular Biosciences</td>
<td>8</td>
<td>4,647,520</td>
<td>12.75%</td>
<td>17.65%</td>
</tr>
<tr>
<td>Network Science</td>
<td>3</td>
<td>200,000</td>
<td>0.55%</td>
<td>0.06%</td>
</tr>
<tr>
<td>Ocean Science</td>
<td>3</td>
<td>230,000</td>
<td>0.63%</td>
<td>1.30%</td>
</tr>
<tr>
<td>Physics</td>
<td>4</td>
<td>2,252,400</td>
<td>6.18%</td>
<td>16.43%</td>
</tr>
<tr>
<td>Training & Development</td>
<td>11</td>
<td>2,362,000</td>
<td>6.48%</td>
<td>0.16%</td>
</tr>
</tbody>
</table>
Jetstream for engineering researchers (and others)

Matlab and SimuLink and additional toolkits are installed on Jetstream

You do NOT need to have a local license to use MATLAB on Jetstream

If you are a researcher, and MATLAB or SimuLink… you’re ready to go!

If you are an engineering researcher, and you need other tools... Let us know – we are happy to consider other requests

http://jetstream-cloud.org/

funded by the National Science Foundation
Award ACI-1445604
Not just the usual suspects…

Physics, chemistry, and other “usual” HPC suspects are represented, but Jetstream also is home to projects on:

- Financial analysis / Economics
- Political science
- Humanities / Text analysis
- Network analysis
- Computer Science / Machine learning
- Satellite data analysis
Jetstream for Education

Jetstream has been used in multiple graduate and undergraduate courses

- Management, Access, and Use of Big and Complex Data
- Multiple informatics and general bioinformatics courses
- Business Intelligence (big data and analysis)
- Research Topics in Music
- Multiple genetics and sequencing courses
- Multiple information security and assurance courses
- …and others…

Multiple Research Data Alliance Workshops, multiple workshops/classes on Galaxy, data analysis in finance using R, security and intrusion detection, and principles in cloud computing and more!

http://jetstream-cloud.org/
Another Use Case: Galaxy riding Jetstream

Galaxy is a platform for biomedical research, focused on accessibility, transparency and reproducibility
• The main project instance (usegalaxy.org) has more than 100,000 registered users executing 300,000+ jobs each month
• Many users need more capacity than the public quota, or other customizations (e.g., new tools)

Use Jetstream as a *bursting* platform
• From Galaxy Main, offload jobs onto a remote Slurm cluster running on Jetstream instances
• Run Galaxy Interactive Environments (i.e., Dockerized IPython/RStudio containers) in an isolated environment on a Swarm cluster running on Jetstream

Use Jetstream as a *self-service* platform
• Pre-built Galaxy image configured with hundreds of tools and access to TBs of genomic reference data, available via the self-launch model within minutes
• Allows users to acquire (free) resources, and gives them complete control

http://jetstream-cloud.org/

funded by the National Science Foundation
Award #ACI-1445604
Jetstream Gateway Highlights

- **IRIS**
 - Serving large scale earthquake and geographical data for analysis
- **Unidata**
 - Providing distribution and analysis of meteorological data
- **OpenMRS**
 - Providing medical records systems for the resource-constrained
- **SEAGrid**
 - Computational chemistry, molecular and fluid dynamics, and structural mechanics gateway
- **NAMDRunner**
 - Based on the GenApp gateway – over 1 million computing hours used to date for MD
- **ChemCompute Gateway**
 - Providing a computational chemistry gateway for educational use

- Coming gateways: The Neuroscience Gateway, UltraScan III, and others
Jetstream usage highlights – 1 October 2018

- 413 active XSEDE projects covering 75 fields of science and 2558 active users representing 190 institutions
- 80% of Jetstream users have not used any other XSEDE system
- >143M CPU hours allocated to XSEDE projects since June 2016
- 15 active science gateways
- 47 education/teaching allocations serving over 904 students
- 1151 (avg concurrent) active VMs in previous qtr, 955 in PY2*
- Highest user satisfaction in most recent XSEDE survey

*M&O PY2 to date 11/12 months
Jetstream Timeline…what comes next?

- Completed our second year of operations on September 1, 2018
- Soliciting Research allocation requests plus Startup and Education allocations – including Science Gateways!
- Adding services as deemed useful/mature (Heat, Magnum, Trove, Manila, etc)
- Atmosphere enhancements on a regular cycle
- Working on partnerships with groups like HubZero and others to extend the value of Jetstream
Requesting access to Jetstream

- Trial allocations available TODAY
 http://wiki.jetstream-cloud.org/Jetstream+Trial+Access+Allocation
- You can request startup allocations anytime. (Startups are simple!)
 http://wiki.jetstream-cloud.org/Jetstream+Allocations
- You can request allocations for educational use anytime.
- Next submission period for large allocations is 15 Sept - 15 Oct 2018.
- Research allocation: Main project description (up to 10 pages) and Scaling doc (up to 5 pages) – We can help!
Expanding the reach: Jetstream REU Program

- NSF Supplement for undergraduates
- 4 students participated in 2017
- 6 students participated in 2018

- REU student videos on YouTube
 https://www.youtube.com/user/IUPTI
Where can I get help?

User guides: https://portal.xsede.org/user-guides

XSEDE KB: https://portal.xsede.org/knowledge-base

Email: help@xsede.org

Campus Champions: https://www.xsede.org/campus-champions

Introduction to Jetstream Virtual Workshop: https://cvw.cac.cornell.edu/jetstream/

Jetstream Allocations Virtual Workshop: https://cvw.cac.cornell.edu/JetstreamReq/
Jetstream Fun: Happy cluster / Angry Cluster

funded by the National Science Foundation
Award #ACI-1445604
Infrared image of Jetstream
Jetstream Partners

funded by the National Science Foundation
Award #ACI-1445604
Questions?

Project website: http://jetstream-cloud.org/
Project email: help@jetstream-cloud.org Direct email: jeremy@iu.edu

License Terms

• Jetstream is supported by NSF award 1445604 (David Y. Hancock, IU, PI)
• XSEDE is supported by NSF award 1053575 (John Towns, UIUC, PI)
• This research was supported in part by the Indiana University Pervasive Technology Institute, which was established with the assistance of a major award from the Lilly Endowment, Inc. Opinions presented here are those of the author(s) and do not necessarily represent the views of the NSF, IUPTI, IU, or the Lilly Endowment, Inc.
• Items indicated with a © are under copyright and used here with permission. Such items may not be reused without permission from the holder of copyright except where license terms noted on a slide permit reuse.
• Except where otherwise noted, contents of this presentation are copyright 2015 by the Trustees of Indiana University.
• This document is released under the Creative Commons Attribution 3.0 Unported license (http://creativecommons.org/licenses/by/3.0/). This license includes the following terms: You are free to share – to copy, distribute and transmit the work and to remix – to adapt the work under the following conditions: attribution – you must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). For any reuse or distribution, you must make clear to others the license terms of this work.
And onward…
Cloud Computing Terms...simplified

Image: a file on a disk. It will be booted to create an...

Instance: a running virtual server; i.e. something you can log into.

Running: the *instance* is up & available for use

Suspended: the *instance* is memory resident but not running

Stopped: the *instance* is shutdown akin to powering down

Shelved: the *instance* is shutdown, written to disk, and stored
Cloud Computing Terms…simplified

Flavor: the size of a running instance; i.e. #core, RAM, disk

Hypervisor: the thing the instance runs on; something akin to a software defined hardware compute server.

Snapshot: the process of taking an instance and turning it to an image.

State: something worth remembering; i.e. the state of the system
Object store: a blob of bits; it has a starting address & a size. There may be metadata associated with the object. The data is consumed in a streaming manner.

Block store: a software defined entity akin to an unformatted hardware disk drive.

Filesystem: hierarchical in nature, directories & files, ability to open, seek, read, write.

Persistent storage: If you pull the plug, it will still exist when power is restored. Safe to store data or state here.

Ephemeral storage: If you pull the plug, it no longer exists. (Don’t put your data here!!!)