Jetstream Overview:
A national research and education cloud

RMACC HPC Symposium 2020
May 21, 2020 – Boulder, CO / Bloomington, IN / Webinar

Jeremy Fischer – Jeremy@iu.edu - Indiana University
Manager, Jetstream Cloud, UITS Research Technologies

NSF Funding Areas in HPC

Traditionally concentrated on enabling petascale capability
- Blue Waters – 13.3 petaflops, 2012 (Frontera awarded late 2018, coming in 2019)
- Stampede – 9.6 petaflops, 2013 (extended to Stampede2 in 2017 – 18 petaflops)
- Comet – ~2.0 petaflops, 2014 (Expanse awarded mid 2019, coming in 2020)

Has funded research into building clouds and computer science
- CloudLab (renewed for 2nd phase)
- Chameleon (renewed for 2nd phase)

Now funding clouds to do research
- Bridges (Hybrid system) – (Bridges2 awarded mid 2019, coming in 2020)
- Jetstream
Expanding NSF XD’s reach and impact

Around 350,000 researchers, educators, & learners received NSF support in 2015

- **Less than 2%** completed a computation, data analysis, or visualization task on XD/XSEDE program resources
- Less than 4% had an XSEDE Portal account
- **70%** of researchers surveyed* claimed to be resource constrained

Why are the people not using XD/XSEDE systems not using them?

- Perceived **ease of access** and use
- HPC resources – the traditional view of what XSEDE offers - are often **not well-matched** to their needs
- They just don’t need **that much** capability

XSEDE Cloud Survey Report - http://hdl.handle.net/2142/45766
“But I really don’t have research needs...I don’t need the national research cyberinfrastructure.”

– multiple researchers at small colleges and universities
When you have to drive to work - but R has also only completed 10hrs of 24hrs worth of simulations. Can I go in the T2 lane with this thing? 😂 #rstats
#sydneytraffic
What is Jetstream and why does it exist?

• NSF’s first production cloud facility
• Focus on ease-of-use, broad accessibility
• User-selectable library of preconfigured virtual machines

• Provides on-demand interactive computing and analysis or persistent services such as gateways
• Enables configurable environments; programmable cyberinfrastructure
Who uses Jetstream?

- The researcher needing a handful of cores (1 to 44/vCPU)
- Software creators and researchers needing to create their own VMs and workflows
- Science gateway creators using Jetstream as either the frontend or processor for scientific jobs
- STEM Educators teaching on a variety of subjects
What Jetstream isn’t…

• It’s not traditional HPC
• There’s no shared filesystem (think cloudy!)
• There’s no high-end interconnect fabric (keep thinking cloudy!)
• There aren’t GPUs (yet...they’re coming!)
• It isn’t Amazon, Azure, or GCE (similar, but...)
HPC vs Cloud

Adapting to a different environment:
• No reservations, no queueing – more interactive usage
• Being your own admin – hey, we have root!**
• You really can have almost any (linux) software you want**

** Here there be dragons...
Jetstream and way of the cloud...

- **Cloudy Technologies**: clouds are more than just virtual machines (VM)
 - **Old way**: robust (expensive) infrastructure, weak (cheap) software
 - You expect the hardware to not fail
 - State in maintained in volatile data structures
 - **Cloudy way**: commodity infrastructure, robust software
 - Expect & plan for infrastructure to fail
 - Put intelligence into the software to handle infrastructure failure
- And my favorite...
Thinking about VMs...

Cows, not pets: pets take great amount of care, feeding, and you name them; cows you intend to have high turnover and you give them numbers.

-- Mike Lowe (Jetstream architect)

**some caveats for gateways...
Jetstream System Overview

IU Cyberinfrastructure
- **Jetstream (production)**
 - Compute: 320 Nodes, 7,680 Cores, 40 TB RAM, 640 TB local disk
 - Storage: 960 TB

TACC Cyberinfrastructure
- **Jetstream (production)**
 - Compute: 320 Nodes, 7,680 Cores, 40 TB RAM, 640 TB local disk
 - Storage: 960 TB

U of Arizona Cyberinfrastructure
- **Jetstream (development)**
 - Compute: 16 Nodes, 2 TB RAM, 384 Cores, 32 TB local disk

Connections:
- 40 Gbps: IU to TACC, TACC to U of Arizona, U of Arizona to Internet2
- 100 Gbps: IU to U of Arizona, TACC to Internet2
- 10 Gbps: TACC to XSEDE
Platform Overview

- Globus Auth
- Atmosphere API
- Atmo Services
- XSEDE Accounting
- OpenStack
- Ceph

Indiana University

TACC
The Jetstream Atmosphere web interface
The Jetstream Atmosphere web interface

Featured Images

<table>
<thead>
<tr>
<th>Image Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centos 7 (7.2) Development GUI</td>
<td>Imported Application - Centos 7 (7.2) Development GUI</td>
</tr>
<tr>
<td>BioLinux 8</td>
<td>Based on Ubuntu 14.04.3 - Trusty Tahr - server - clouding - **REQUIRES m1.small instance ...</td>
</tr>
<tr>
<td>Ubuntu 14.04.3 Development GUI</td>
<td>Based on Ubuntu 14 04.3 Development Patched up to date as of 12/15/16 Base Ubuntu 14 04.3...</td>
</tr>
<tr>
<td>Intel Development (CentOS 7)</td>
<td>Intel compilers and development environment - *REQUIRES a m1.small or larger VM to la ...</td>
</tr>
<tr>
<td>R with Intel compilers (CentOS ...</td>
<td>R with Intel compilers built on CentOS 7 (7.3) - ** Requires m1.small or greater sized VM * ...</td>
</tr>
<tr>
<td>Galaxy Standalone</td>
<td>Galaxy 16.01 Standalone - based on Ubuntu 14.04.4 LTS - This is a standalone Galaxy server ...</td>
</tr>
</tbody>
</table>
Pause...as we look at the Atmosphere Interface
Platform Overview

Globus Auth
Atmosphere API
Atmo Services
XSEDE Accounting
OpenStack
Ceph
OpenStack
Ceph

Indiana University
TACC
OpenStack Overview

Client → Keystone

Client → Nova

Keystone → Glance

Keystone → Ceph

Nova → Ceph

Ceph → Glance

Glance → Compute

Cinder → Compute
API Access to Jetstream

- What was unexpected
 - Demand for programmable cyberinfrastructure
 - Great platform for learning system administration skills
 - Great platform for teaching & learning cloudy technologies

- Command line clients
- Horizon dashboard very popular; but, incomplete
- Programmatic control; python is popular

 (https://docs.openstack.org/openstacksdk/latest/)
Installing the client

• Simple on most Mac OS X and Linux hosts (a single pip command)
• Less simple, but still reasonably easy on Windows
 • Once you have a python installed, becomes a simple pip install
• Latest python-openstackclient (> 4.0.0) works with Python 3
• **Best practice – use a virtual environment like virtenv for your install**
• Docs on the wiki for this!
• Other CLI clients are available – e.g. python-swiftclient (Swift and S3), python-heatclient (Heat templates), etc
 • These are optional and not necessary for basic operations!
Horizon GUI interface

• Allows most things you can do from the CLI
• Nice for some tasks
 • Network visualizer is something we tend to use as a troubleshooting tool
 • Easier to look at security groups on Horizon (IMHO)
• Downsides:
 • considerably slower than using CLI
 • not all features are present that are in CLI
 • can’t do things programmatically
Getting started with the API

Things you’ll set up once (hopefully):

• SSH keys
• Security groups (though you’ll build on the basics as you do more advanced things)
• Create a network
• Create a subnet
• Create a router

Things you’ll likely do many times:

• Create and launch instances
• Screw up and delete instances
• Launch more instances
• Expand security groups

API CLI Tutorial walkthrough: https://github.com/jlf599/JetstreamAPITutorial
API Horizon walkthrough: http://wiki.jetstream-cloud.org/Using+the+OpenStack+Horizon+GUI+Interface
Wrapping up the API side...
Key Allocation Areas on Jetstream (Dec 2018 – Nov 2019)

<table>
<thead>
<tr>
<th>Discipline or area of interest</th>
<th>#of Jetstream allocations</th>
<th>SUs allocated on Jetstream</th>
<th>SU Increase/Decrease on Jetstream over previous year</th>
<th>% of SUs allocated on Jetstream</th>
<th>% of all SUs allocated on all XSEDE-supported systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>75</td>
<td>7,267,083</td>
<td>54.15% Decrease</td>
<td>7.60%</td>
<td>4.66%</td>
</tr>
<tr>
<td>Computer Science / Advance Scientific Computing</td>
<td>141</td>
<td>17,034,146</td>
<td>22.28% Increase</td>
<td>17.82%</td>
<td>6.11%</td>
</tr>
<tr>
<td>Earth Sciences/ Geosciences</td>
<td>27</td>
<td>4,255,441</td>
<td>138.65% Increase</td>
<td>4.45%</td>
<td>1.37%</td>
</tr>
<tr>
<td>Electrical/ Mechanical/ Chemical Systems</td>
<td>13</td>
<td>7,516,478</td>
<td>560.71% Increase</td>
<td>3.85%</td>
<td>10.84%</td>
</tr>
<tr>
<td>Engineering</td>
<td>9</td>
<td>316,406</td>
<td>32.56% Decrease</td>
<td>0.33%</td>
<td>0.32%</td>
</tr>
<tr>
<td>Information, Robotics, and Intelligent Systems</td>
<td>15</td>
<td>3,265,334</td>
<td>994.80% Increase</td>
<td>3.42%</td>
<td>0.77%</td>
</tr>
<tr>
<td>Molecular Biosciences</td>
<td>82</td>
<td>15,561,599</td>
<td>58.61% Increase</td>
<td>16.28%</td>
<td>19.94%</td>
</tr>
<tr>
<td>Neuroscience and Behavioral Sciences</td>
<td>33</td>
<td>9,161,826</td>
<td>0.53% Increase</td>
<td>9.59%</td>
<td>2.98%</td>
</tr>
<tr>
<td>Ocean and Atmospheric Sciences</td>
<td>12</td>
<td>5,484,897</td>
<td>49.81% Increase</td>
<td>5.74%</td>
<td>5.31%</td>
</tr>
<tr>
<td>Physics</td>
<td>16</td>
<td>6,517,597</td>
<td>160.97% Increase</td>
<td>6.82%</td>
<td>11.11%</td>
</tr>
<tr>
<td>Social Sciences and Humanities</td>
<td>32</td>
<td>4,465,626</td>
<td>170.11% Increase</td>
<td>4.67%</td>
<td>1.16%</td>
</tr>
<tr>
<td>Training and Education</td>
<td>110</td>
<td>15,337,763</td>
<td>8.65% Increase</td>
<td>16.05%</td>
<td>4.29%</td>
</tr>
</tbody>
</table>
Matlab for researchers and educators

• Matlab and SimuLink and additional toolkits are installed on Jetstream

• You do NOT need to have a local license to use MATLAB on Jetstream

• If you are a researcher, and MATLAB or SimuLink... you’re ready to go!

• If you are an engineering researcher, and you need other tools... let us know!
Not just the usual suspects...

Physics, chemistry, and other “usual” HPC suspects are represented, but Jetstream also is home to projects on:

- Financial analysis / Economics
- Political science
- Humanities / Text analysis
- Network analysis
- Computer Science / Machine learning
- Satellite data analysis
Jetstream for Education

Jetstream has been used in multiple graduate and undergraduate courses

• Management, Access, and Use of Big and Complex Data
• Multiple informatics and general bioinformatics courses
• Business Intelligence (big data and analysis)
• Research Topics in Music
• Multiple genetics and sequencing courses
• Multiple information security and assurance courses

Research Data Alliance workshops, Galaxy workshops, data analysis in finance using R, security and intrusion detection, and principles in cloud computing...
Update on Previous Key Project: Galaxy

Jetstream usage from usegalaxy.org

- Bursting to Jetstream increased usegalaxy.org’s under-load capacity and throughput
- Jetstream well suited for near-immediate execution (no queue waiting)
- **27,902** distinct users have executed jobs on Jetstream via usegalaxy.org (as of January 14, 2020)
Jetstream for education – in action at AMS2020

- Unidata-led workshop at American Meteorological Society (AMS) 2020 conference
- 127 users actively participating
- Participants used a JupyterHub running on Jetstream (40 node Kubernetes cluster of 6 core m1.medium VMs) for a 90 minute Unidata PyAOS (Python for the Atmospheric and Oceanic Sciences) workshop
- The students were successfully able to run their interactive Python code notebooks as the instructors presented their material
Other top allocations on Jetstream

- **BrainLife (brainlife.io)** – Franco Pestilli, Indiana University
- **Cloudbased Cyberinfrastructure for Large Facility Operations and Natural Hazards Research** - Charles Meertens, UNAVCO
- **Parallelizing Development of Immunomics and Genomics Tools** - Ramy Arnaout, Beth Israel Deaconess Medical Center
- **Atmospheric Science in the Cloud: Enabling Data-Proximate Science** – Mohan Ramamurthy, UNIDATA (University Corporation for Atmospheric Research)
- **Science and Engineering Applications Grid (SEAGrid): A Gateway for Simulation of Molecular and Material Structures and Dynamics** – Sudhakar Pamidighantam, Indiana University
Expanding the reach: Jetstream REU Program

NSF Supplement for undergraduates
• 4 students participated in 2017
• 6 students participated in 2018
• 7 students participating presently

• REU student videos on YouTube
 https://www.youtube.com/user/IUPTI
Jetstream usage highlights – 1 Apr 2020

- 392 XSEDE projects covering 77 fields of science and over 2100 active users representing 203 institutions
- 80% of Jetstream users have not used any other XSEDE system
- >310M CPU hours allocated to XSEDE projects since June 2016
- 34 active science gateways
- 46 education/teaching allocations serving over 800 students
- 1189 mean active VMs in previous qtr, 1632 peak active VM count
- **Highest** user satisfaction in most recent XSEDE survey
Jetstream Timeline...what comes next?

- Wrapping up our third year of operations with extension to November 2020 (and beyond, into 2021)
- Soliciting Research allocation requests plus Startup and Education allocations – including Science Gateways!
- Adding services as deemed useful/mature (Heat, Magnum, Trove, Manila, etc)
- Atmosphere enhancements on a regular cycle
- Working on partnerships with groups like HubZero and others to extend the value of Jetstream
Requesting access to Jetstream

• Trial allocations available TODAY
 • http://wiki.jetstream-cloud.org/Jetstream+Trial+Access+Allocation
• You can request startup allocations anytime. (Startups are simple!)
 • http://wiki.jetstream-cloud.org/Jetstream+Allocations
• You can request allocations for educational use anytime.
• Next submission period for large allocations is 15 June 2020 – 15 July 2020
• Research allocation: Project desc (<10 pages) and Scaling doc (<5 pages)
 • We can help!
Where can I get help?

- User guides: https://portal.xsede.org/user-guides
- XSEDE KB: https://portal.xsede.org/knowledge-base
- Email: help@xsede.org
- Campus Champions: https://www.xsede.org/campus-champions
- Introduction to Jetstream Virtual Workshop: https://cvw.cac.cornell.edu/jetstream/
- Jetstream Allocations Virtual Workshop: https://cvw.cac.cornell.edu/JetstreamReq/
Questions?

- Project website: http://jetstream-cloud.org/
- Project email: help@jetstream-cloud.org Direct email: jeremy@iu.edu

License Terms

- Jetstream is supported by NSF award 1445604 (David Y. Hancock, IU, PI)
- XSEDE is supported by NSF award 1053575 (John Towns, UIUC, PI)
- This research was supported in part by the Indiana University Pervasive Technology Institute, which was established with the assistance of a major award from the Lilly Endowment, Inc. Opinions presented here are those of the author(s) and do not necessarily represent the views of the NSF, IUPTI, IU, or the Lilly Endowment, Inc.
- Items indicated with a © are under copyright and used here with permission. Such items may not be reused without permission from the holder of copyright except where license terms noted on a slide permit reuse.
- Except where otherwise noted, contents of this presentation are copyright 2015 by the Trustees of Indiana University.
- This document is released under the Creative Commons Attribution 3.0 Unported license (http://creativecommons.org/licenses/by/3.0/). This license includes the following terms: You are free to share – to copy, distribute and transmit the work and to remix – to adapt the work under the following conditions: attribution – you must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). For any reuse or distribution, you must make clear to others the license terms of this work.