Accessing Jetstream via the OpenStack Command Line Interface

George Turner, Chief Systems Architect
Pervasive Technologies Institute, UITS/RT, Indiana University

Open Cloud Institute
UTSA, San Antonio, TX

12-Oct-2017
Terms & Definitions
Cloud Computing Terms ...simplified

- **Image**: a file on a disk. It will be booted to create an…
- **Instance**: a running virtual server; i.e. something you can log into.
- **Running**: the instance is up & running
- **Suspended**: the instance is memory resident but not running
- **Stopped**: the instance is shutdown akin to powering down
- **Shelved**: the instance is shutdown, backedup, and stored
Cloud Computing Terms ...simplified

- **Flavor**: the size of a running instance; i.e. #core, RAM, disk
- **Hypervisor**: the thing the instance runs on; something akin to a software defined hardware compute server.
- **Snapshot**: the process of taking an instance and turning it to an image.
- **State**: something worth remembering; i.e. the state of the system
Cloud Computing Terms ...simplified (Cont.)

- **Object store**: a blob of bits; it has a starting address & a size. There may be metadata associated with the object. The data is consumed in a streaming manner.

- **Block store**: a software defined entity akin to an unformatted hardware disk drive.

- **Filesystem**: hierarchical in nature, directories & files, ability to open, seek, read, write.

- **Persistent storage**: If you pull the plug, it will still exist when power is restored. Safe to store data or state here.

- **Ephemeral storage**: If you pull the plug, it no longer exists. (Don’t put your data here!!!)
What is Jetstream
What is Jetstream?

• **User-friendly**, widely accessible cloud environment
 • **User-selectable library** of preconfigured virtual machines
 • Interactive computing
 • Software maintained by domain specialist
 • No need for system administration skills
 • The “Atmosphere” side

• **Programmable cyberinfrastructure**
 • Go beyond batch computing
 • Implement modern cloud computing techniques
 • Common modality for science gateways
 • The “API” side
“Long tail” of the Science

Large HPC systems requiring sophisticated distributed memory programming skills
~3% researchers supported by the NSF

Everyone else
Mostly node level parallelism

Supercomputer Scale laptop

http://jetstream-cloud.org/

funded by the National Science Foundation
Award #ACI-1445604
What is Jetstream?

• **Primary goal** is to **expand the user base** of NSF’s eXtreme Digital (XD) program resources beyond the current community of users.

• **Lowering the hurdle** to onboard to XSEDE resources
 • Working to **ease** the **allocation request** process
 • **Easy-Button**; quick access but limited ability. (Beta)

• **Making Science Easy** for domain researchers, engineers, & educators
 • Domain software installed & maintained by the professionals
 • No sys-admin skills necessary

funded by the National Science Foundation
Award #ACI-1445604
What is Jetstream? (Cont.)

- Creating communities
 - Domain developers **create, install, and maintain** the software
 - **Encourage collaboration** within the domains
 - **Operating system** level software is professionally **patched and maintained**

- **Repeatability**: store & publish images via IU Scholarworks & create a DOI

- **Science Gateways**:

- **Programmatic Cyberinfrastructure**
 - More on this in a minute
 - What this class will be covering today
What is Jetstream?

- **Cloudy Technologies:** clouds are more than just virtual machines (VM)
 - **Old way:** robust (expensive) infrastructure, weak (cheap) software
 - You expect the hardware to not fail
 - State in maintained in volatile data structures
 - **Cloudy way:** commodity infrastructure, robust software
 - Expect & plan for infrastructure to fail
 - Put intelligence into the software to handle infrastructure failure
- **Cows, not pets:**
 - pets have **state**, you name them, you get attached to them, you put forth great amount of care and effort
 - cows **do not** have **state**, you expect to have high turnover, you do not get attached to them, you give them numbers instead of names
What is Jetstream?

- **Software layers**
 - **Atmosphere** web interface (*covered this morning*)
 - library of images, generic, domain specific
 - simplify VM administration
 - **OpenStack**: software tools for building and managing cloud computing platforms for public and private clouds.
 - **KVM** hypervisor: what the VMs run on
 - **Ceph**: storage platform that stores data on a single distributed computer cluster, and provides interfaces for **object-**, **block-** and **file-level** storage.
 - **Operating systems**: CentOS, Ubuntu, Windows?
 - **Applications**: e.g. software developed by the domain specialist, gateways, etc.

[funded by the National Science Foundation
Award #ACI-1445604]
API Access to Jetstream

• What was unexpected
 – Demand for programmable cyberinfrastructure
 – Great platform for learning system administration skills
 – Great platform for teaching & learning cloudy technologies

• Command line clients
• Horizon dashboard very popular; but, incomplete
• Programmatic control; python is popular
• Slack channel for collaboration API users of Jetstream
OpenStack
OpenStack Organization

The OpenStack Mission: to produce the ubiquitous Open Source Cloud Computing platform that will meet the needs of public and private clouds regardless of size, by being simple to implement and massively scalable.

OpenStack is open source, openly designed, openly developed by an open community.

OpenStack Project Teams are the building blocks to achieve OpenStack’s mission. One can think of Project Teams as teams of people using tools (code repository, bug tracker, etc) and coordinated processes to produce a number of deliverables, in order to achieve a clearly stated objective.

Browse the official list of OpenStack project teams.

OpenStack software is produced by the OpenStack Foundation.

http://jetstream-cloud.org/

funded by the National Science Foundation
Award ACI-1445604
OpenStack : the Project Navigator

http://www.openstack.org/software/project-navigator/

funded by the National Science Foundation
Award #ACI-1445604
Openstack Projects ...the core services

<table>
<thead>
<tr>
<th>Service</th>
<th>Name</th>
<th>Adoption</th>
<th>Maturity</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity</td>
<td>Keystone</td>
<td>96%</td>
<td>7/8</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Images</td>
<td>Glance</td>
<td>95%</td>
<td>6/8</td>
<td>7 yrs</td>
</tr>
<tr>
<td>Block device</td>
<td>Cinder</td>
<td>88%</td>
<td>7/8</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Networking</td>
<td>Neutron</td>
<td>93%</td>
<td>7/8</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Compute</td>
<td>Nova</td>
<td>95%</td>
<td>8/8</td>
<td>7 yrs</td>
</tr>
<tr>
<td>Object device</td>
<td>Swift</td>
<td>52%</td>
<td>7/8</td>
<td>7 yrs</td>
</tr>
</tbody>
</table>

https://www.openstack.org/software/project-navigator/
Openstack Projects ... some other services

<table>
<thead>
<tr>
<th>Service</th>
<th>Name</th>
<th>Adoption</th>
<th>Maturity</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboard</td>
<td>Horizon</td>
<td>87%</td>
<td>6/8</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Telemetry</td>
<td>Ceilometer</td>
<td>55%</td>
<td>1/8</td>
<td>4 yrs</td>
</tr>
<tr>
<td>Orchestration</td>
<td>Heat</td>
<td>67%</td>
<td>6/8</td>
<td>4 yrs</td>
</tr>
<tr>
<td>Containers</td>
<td>Magnum</td>
<td>11%</td>
<td>2/8</td>
<td>2 yrs</td>
</tr>
<tr>
<td>Map/Reduce</td>
<td>Sahara</td>
<td>10%</td>
<td>3/8</td>
<td>3 yrs</td>
</tr>
</tbody>
</table>

https://www.openstack.org/software/project-navigator/

funded by the National Science Foundation
Award #ACI-1445604
Openstack Projects ...some other services

<table>
<thead>
<tr>
<th>Service</th>
<th>Name</th>
<th>Adoption</th>
<th>Maturity</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared Filesystems</td>
<td>Manila</td>
<td>14%</td>
<td>5/8</td>
<td>3 yrs</td>
</tr>
<tr>
<td>Workflow</td>
<td>Mistral</td>
<td>5%</td>
<td>1/7</td>
<td>1 yr</td>
</tr>
<tr>
<td>Load Balancing as a Service</td>
<td>Octavia</td>
<td>>0%</td>
<td>1/7</td>
<td>1 yr</td>
</tr>
</tbody>
</table>

https://www.openstack.org/software/project-navigator/

funded by the National Science Foundation
Award #ACI-1445604
Hardware & Infrastructure
Production Cloud Hardware (per site)

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Number</th>
<th>Specifications</th>
<th>Function (IU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dell PowerEdge M630 blades</td>
<td>320</td>
<td>2X Intel E5-2680v3 “Haswell”</td>
<td>Compute hosts, OpenStack services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 cores @ 2.5 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>128 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 TB local disk</td>
<td></td>
</tr>
<tr>
<td>Dell PowerEdge R630 1U server</td>
<td>7</td>
<td>2X Intel E5-2680v3 “Haswell”</td>
<td>Cluster management, High Availability, Databases, RabbitMQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 cores @ 2.5 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>128 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 TB local disk</td>
<td></td>
</tr>
<tr>
<td>Dell PowerEdge R730xd 2U servers</td>
<td>20</td>
<td>2X Intel E5-2680v3 “Haswell”</td>
<td>~1 PB Ceph storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 cores @ 2.5 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>64 GB RAM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 TB storage for Ceph pool</td>
<td></td>
</tr>
<tr>
<td>Dell S6000-ON network switches</td>
<td>9</td>
<td>32+2 40 Gb/s ports</td>
<td>Top of Rack & Spine 2 to 1 Fat Tree topology</td>
</tr>
</tbody>
</table>

Funded by the National Science Foundation Award #ACI-1445604
Benchmarks – single node
HPCC results: VM vs BareMetal Comparison

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>VM/BareMetal</th>
<th>Units</th>
<th>What’s tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPL</td>
<td>97%</td>
<td>FLOPS</td>
<td>floating point execution rate for solving a system of linear equations</td>
</tr>
<tr>
<td>DGEMM</td>
<td>98%</td>
<td>FLOPS</td>
<td>floating point execution rate for double precision real matrix-matrix multiplication</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>88%</td>
<td>B/s</td>
<td>bytes/unit_time it takes to transmit a 2MB message from one node to another</td>
</tr>
<tr>
<td>Latency</td>
<td>97%</td>
<td>s</td>
<td>time required to send an 8-byte message from one node to another</td>
</tr>
</tbody>
</table>
HPCC results: VM vs BareMetal Comparison (Cont.)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>VM/BareMetal</th>
<th>Units</th>
<th>What’s tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>80%</td>
<td>up/s</td>
<td>rate of random updates of memory</td>
</tr>
<tr>
<td>Stream</td>
<td>77%</td>
<td>B/s</td>
<td>sustained memory bandwidth</td>
</tr>
<tr>
<td>MPI-FFT</td>
<td>67%</td>
<td>FLOPS</td>
<td>floating point rate of execution of double precision complex one-dimensional Discrete Fourier Tranform</td>
</tr>
<tr>
<td>Ptrans</td>
<td>64%</td>
<td>B/s</td>
<td>rate of transfer for large arrays of data from multiprocessor’s memory</td>
</tr>
</tbody>
</table>

http://jetstream-cloud.org/

funded by the National Science Foundation
Award #ACI-1445604
VM Instance Sizes (Flavors)

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>vCPUs</th>
<th>RAM(GB)</th>
<th>Storage(GB)</th>
<th>Instances/Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiny</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>46</td>
</tr>
<tr>
<td>Small</td>
<td>2</td>
<td>4</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Medium</td>
<td>6</td>
<td>16</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>Large</td>
<td>10</td>
<td>30</td>
<td>120/60*</td>
<td>4</td>
</tr>
<tr>
<td>X-Large</td>
<td>22</td>
<td>60</td>
<td>240/60*</td>
<td>2</td>
</tr>
<tr>
<td>XX-Large</td>
<td>44</td>
<td>120</td>
<td>480/60*</td>
<td>1</td>
</tr>
</tbody>
</table>

Node config: dual Intel E-2680v3 “Haswell”, 24 physical cores/node @ 2.5 GHz, 128 GB RAM, dual 1 TB local disks.

* Effective 29-Mar-2017
Jetstream Systems

Jetstream (production)
- Compute: 320 Nodes, 7,680 Cores, 40 TB RAM, 640 TB local disk
- Storage: 960 TB

Jetstream (development)
- Compute: 16 Nodes, 2 TB RAM, 384 Cores
- Storage: 32 TB local disk

funded by the National Science Foundation
Award #ACI-1445604

http://jetstream-cloud.org/
Platform Overview

- OpenStack API access
- Atmosphere API access (work in progress)
- S3 access to Ceph (it’s working!)

Indiana University

OpenStack

Ceph

TACC

OpenStack

Ceph

Globus Auth

Atmosphere API

Atmo Services

XSEDE Accounting

Web App

funded by the National Science Foundation
Award #ACI-1445604

http://jetstream-cloud.org/
Platform Overview

OpenStack API access

S3 access to Ceph (work in progress)

Globus Auth Atmosphere API
Atmo Services XSEDE Accounting

Web App

Indiana University TACC

Agave API access (work in progress)

OpenStack Ceph OpenStack Ceph

funded by the National Science Foundation
Award #ACI-1445604
Platform Overview

- OpenStack API access
- Atmosphere API
- Globus Auth
- Atmo Services
- XSEDE Accounting

OpenStack API access
S3 access to Ceph (work in progress)

Indiana University
TACC

funded by the National Science Foundation
Award #ACI-1445604

http://jetstream-cloud.org/
OpenStack Overview

[Diagram showing relationships between Client, Keystone, Nova, Glance, Ceph, Cinder, and Compute with arrows indicating connections and dependencies.]
How do we onboard users onto Jetstream?

- An **XSEDE User Portal (XUP) account** is required. They are free! Get one at https://portal.xsede.org

- **Work with your XSEDE Campus Champion.**

- Submit an **allocations request**
 - Read the Allocations Overview - https://portal.xsede.org/allocations-overview
 - Writeup an allocation request – **start with a Startup or Education request** - https://portal.xsede.org/successful-requests

- **Easy Button**: instant access to small, limited instances while the allocation request is processed and the user is vetted.
Jetstream Information Sources

• Twitter: @jetstream-cloud

• Jetstream’s web interface: https://use.jetstream-cloud.org/
 No login required to browse image library

• XSEDE User Portal account is required to actually login:
 https://portal.xsede.org Create account in seconds.

• Jetstream Home page: https://jetstream-cloud.org/

• Jetstream’s public documentation: https://wiki.jetstream-cloud.org
Jetstream Information Sources (Cont.)

• Paper describing Jetstream *Jetstream: A self-provisioned, scalable science and engineering cloud environment*

• Configuration management: https://github.com/jetstream-cloud/Jetstream-Salt-States

For questions, comments, etc. of any manner
help@jetstream-cloud.org
Jetstream Partners

funded by the National Science Foundation
Award #ACI-1445604
Questions?

Project website: http://jetstream-cloud.org/
Project email: jethelp@iu.edu
Direct email: turnerg@iu.edu

License Terms

- Jetstream is supported by NSF award 1445604 (Craig Stewart, IU, PI)
- XSEDE is supported by NSF award 1053575 (John Towns, UIUC, PI)
- This research was supported in part by the Indiana University Pervasive Technology Institute, which was established with the assistance of a major award from the Lilly Endowment, Inc. Opinions presented here are those of the author(s) and do not necessarily represent the views of the NSF, IUPITI, IU, or the Lilly Endowment, Inc.
- Items indicated with a © are under copyright and used here with permission. Such items may not be reused without permission from the holder of copyright except where license terms noted on a slide permit reuse.
- Except where otherwise noted, contents of this presentation are copyright 2015 by the Trustees of Indiana University.
- This document is released under the Creative Commons Attribution 3.0 Unported license (http://creativecommons.org/licenses/by/3.0/). This license includes the following terms: You are free to share – to copy, distribute and transmit the work and to remix – to adapt the work under the following conditions: attribution – you must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). For any reuse or distribution, you must make clear to others the license terms of this work.
Resources for this class

- The **Computational Science in the Cloud Institute** class
 - https://tacc.github.io/CSC2017Institute/docs/day4/intro_to_openstack.html
 - Utilizes Jupyter notebooks
 - Cut & Paste examples
 - Use only the “new” commands
 - The ”old” commands give insight into the various OpenStack Projects
Resources for this class

- General API access to Jetstream information
 - https://iujetstream.atlassian.net/wiki/spaces/JWT/pages/39682057/Using+the+Jetstream+API

- Setting up the openrc
 - https://iujetstream.atlassian.net/wiki/spaces/JWT/pages/39682064/Setting+up+openrc.sh

- Openstack Command Line examples for today’s class
 - https://iujetstream.atlassian.net/wiki/spaces/JWT/pages/35913730/OpenStack+command+line
 - Cut-&-Paste examples
Resources for this class

- Openstack Command Line example

- Jetstream-cloud.org
 - Click Get Started
 - Click Jetstream wiki in first paragraph
 - In the left column, scroll to near bottom
 - Click on Using the Jetstream API
 - Entry will expand
 - ~3 lines down, click on OpenStack Command Line
Getting started

• ssh utsa-class-cmd.jetstream-cloud.org
• username and password on paper
• cat openrc
• source openrc
• printenv | grep OS | grep –v PASS
• openstack image list
 – Is it working?